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FILE ORGANIZATIONS & INDEXES

If you don’t find it in the index, look very carefully through the entire catalog.

—Sears, Roebuck, and Co., Consumers’ Guide, 1897

A file organization is a way of arranging the records in a file when the file is stored

on disk. A file of records is likely to be accessed and modified in a variety of ways,

and different ways of arranging the records enable different operations over the file

to be carried out efficiently. For example, if we want to retrieve employee records in

alphabetical order, sorting the file by name is a good file organization. On the other

hand, if we want to retrieve all employees whose salary is in a given range, sorting

employee records by name is not a good file organization. A DBMS supports several

file organization techniques, and an important task of a DBA is to choose a good

organization for each file, based on its expected pattern of use.

We begin this chapter with a discussion in Section 8.1 of the cost model that we

use in this book. In Section 8.2, we present a simplified analysis of three basic file

organizations: files of randomly ordered records (i.e., heap files), files sorted on some

field, and files that are hashed on some fields. Our objective is to emphasize the

importance of choosing an appropriate file organization.

Each file organization makes certain operations efficient, but often we are interested in

supporting more than one operation. For example, sorting a file of employee records on

the name field makes it easy to retrieve employees in alphabetical order, but we may

also want to retrieve all employees who are 55 years old; for this, we would have to scan

the entire file. To deal with such situations, a DBMS builds an index, as we described

in Section 7.5.2. An index on a file is designed to speed up operations that are not

efficiently supported by the basic organization of records in that file. Later chapters

cover several specific index data structures; in this chapter we focus on properties of

indexes that do not depend on the specific index data structure used.

Section 8.3 introduces indexing as a general technique that can speed up retrieval of

records with given values in the search field. Section 8.4 discusses some important

properties of indexes, and Section 8.5 discusses DBMS commands to create an index.
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8.1 COST MODEL

In this section we introduce a cost model that allows us to estimate the cost (in terms

of execution time) of different database operations. We will use the following notation

and assumptions in our analysis. There are B data pages with R records per page.

The average time to read or write a disk page is D, and the average time to process

a record (e.g., to compare a field value to a selection constant) is C. In the hashed

file organization, we will use a function, called a hash function, to map a record into a

range of numbers; the time required to apply the hash function to a record is H.

Typical values today are D = 15 milliseconds, C and H = 100 nanoseconds; we there-

fore expect the cost of I/O to dominate. This conclusion is supported by current

hardware trends, in which CPU speeds are steadily rising, whereas disk speeds are not

increasing at a similar pace. On the other hand, as main memory sizes increase, a

much larger fraction of the needed pages are likely to fit in memory, leading to fewer

I/O requests.

We therefore use the number of disk page I/Os as our cost metric in this book.

We emphasize that real systems must consider other aspects of cost, such as CPU

costs (and transmission costs in a distributed database). However, our goal is

primarily to present the underlying algorithms and to illustrate how costs can

be estimated. Therefore, for simplicity, we have chosen to concentrate on only

the I/O component of cost. Given the fact that I/O is often (even typically) the

dominant component of the cost of database operations, considering I/O costs

gives us a good first approximation to the true costs.

Even with our decision to focus on I/O costs, an accurate model would be too

complex for our purposes of conveying the essential ideas in a simple way. We have

therefore chosen to use a simplistic model in which we just count the number of

pages that are read from or written to disk as a measure of I/O. We have ignored

the important issue of blocked access—typically, disk systems allow us to read

a block of contiguous pages in a single I/O request. The cost is equal to the time

required to seek the first page in the block and to transfer all pages in the block.

Such blocked access can be much cheaper than issuing one I/O request per page

in the block, especially if these requests do not follow consecutively: We would

have an additional seek cost for each page in the block.

This discussion of the cost metric we have chosen must be kept in mind when we

discuss the cost of various algorithms in this chapter and in later chapters. We discuss

the implications of the cost model whenever our simplifying assumptions are likely to

affect the conclusions drawn from our analysis in an important way.
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8.2 COMPARISON OF THREE FILE ORGANIZATIONS

We now compare the costs of some simple operations for three basic file organizations:

files of randomly ordered records, or heap files; files sorted on a sequence of fields; and

files that are hashed on a sequence of fields. For sorted and hashed files, the sequence of

fields (e.g., salary, age) on which the file is sorted or hashed is called the search key.

Note that the search key for an index can be any sequence of one or more fields; it need

not uniquely identify records. We observe that there is an unfortunate overloading of

the term key in the database literature. A primary key or candidate key (fields that

uniquely identify a record; see Chapter 3) is unrelated to the concept of a search key.

Our goal is to emphasize how important the choice of an appropriate file organization

can be. The operations that we consider are described below.

Scan: Fetch all records in the file. The pages in the file must be fetched from

disk into the buffer pool. There is also a CPU overhead per record for locating

the record on the page (in the pool).

Search with equality selection: Fetch all records that satisfy an equality selec-

tion, for example, “Find the Students record for the student with sid 23.” Pages

that contain qualifying records must be fetched from disk, and qualifying records

must be located within retrieved pages.

Search with range selection: Fetch all records that satisfy a range selection,

for example, “Find all Students records with name alphabetically after ‘Smith.’ ”

Insert: Insert a given record into the file. We must identify the page in the file

into which the new record must be inserted, fetch that page from disk, modify it

to include the new record, and then write back the modified page. Depending on

the file organization, we may have to fetch, modify, and write back other pages as

well.

Delete: Delete a record that is specified using its rid. We must identify the

page that contains the record, fetch it from disk, modify it, and write it back.

Depending on the file organization, we may have to fetch, modify, and write back

other pages as well.

8.2.1 Heap Files

Scan: The cost is B(D + RC) because we must retrieve each of B pages taking time

D per page, and for each page, process R records taking time C per record.

Search with equality selection: Suppose that we know in advance that exactly one

record matches the desired equality selection, that is, the selection is specified on a

candidate key. On average, we must scan half the file, assuming that the record exists
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and the distribution of values in the search field is uniform. For each retrieved data

page, we must check all records on the page to see if it is the desired record. The cost

is 0.5B(D + RC). If there is no record that satisfies the selection, however, we must

scan the entire file to verify this.

If the selection is not on a candidate key field (e.g., “Find students aged 18”), we

always have to scan the entire file because several records with age = 18 could be

dispersed all over the file, and we have no idea how many such records exist.

Search with range selection: The entire file must be scanned because qualifying

records could appear anywhere in the file, and we do not know how many qualifying

records exist. The cost is B(D + RC).

Insert: We assume that records are always inserted at the end of the file. We must

fetch the last page in the file, add the record, and write the page back. The cost is

2D + C.

Delete: We must find the record, remove the record from the page, and write the

modified page back. We assume that no attempt is made to compact the file to reclaim

the free space created by deletions, for simplicity.1 The cost is the cost of searching

plus C + D.

We assume that the record to be deleted is specified using the record id. Since the

page id can easily be obtained from the record id, we can directly read in the page.

The cost of searching is therefore D.

If the record to be deleted is specified using an equality or range condition on some

fields, the cost of searching is given in our discussion of equality and range selections.

The cost of deletion is also affected by the number of qualifying records, since all pages

containing such records must be modified.

8.2.2 Sorted Files

Scan: The cost is B(D + RC) because all pages must be examined. Note that this

case is no better or worse than the case of unordered files. However, the order in which

records are retrieved corresponds to the sort order.

Search with equality selection: We assume that the equality selection is specified

on the field by which the file is sorted; if not, the cost is identical to that for a heap

1In practice, a directory or other data structure is used to keep track of free space, and records are
inserted into the first available free slot, as discussed in Chapter 7. This increases the cost of insertion
and deletion a little, but not enough to affect our comparison of heap files, sorted files, and hashed
files.
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file. We can locate the first page containing the desired record or records, should any

qualifying records exist, with a binary search in log2B steps. (This analysis assumes

that the pages in the sorted file are stored sequentially, and we can retrieve the ith page

on the file directly in one disk I/O. This assumption is not valid if, for example, the

sorted file is implemented as a heap file using the linked-list organization, with pages

in the appropriate sorted order.) Each step requires a disk I/O and two comparisons.

Once the page is known, the first qualifying record can again be located by a binary

search of the page at a cost of Clog2R. The cost is Dlog2B + Clog2R, which is a

significant improvement over searching heap files.

If there are several qualifying records (e.g., “Find all students aged 18”), they are

guaranteed to be adjacent to each other due to the sorting on age, and so the cost of

retrieving all such records is the cost of locating the first such record (Dlog2B+Clog2R)

plus the cost of reading all the qualifying records in sequential order. Typically, all

qualifying records fit on a single page. If there are no qualifying records, this is es-

tablished by the search for the first qualifying record, which finds the page that would

have contained a qualifying record, had one existed, and searches that page.

Search with range selection: Again assuming that the range selection is on the

sort field, the first record that satisfies the selection is located as it is for search with

equality. Subsequently, data pages are sequentially retrieved until a record is found

that does not satisfy the range selection; this is similar to an equality search with many

qualifying records.

The cost is the cost of search plus the cost of retrieving the set of records that satisfy the

search. The cost of the search includes the cost of fetching the first page containing

qualifying, or matching, records. For small range selections, all qualifying records

appear on this page. For larger range selections, we have to fetch additional pages

containing matching records.

Insert: To insert a record while preserving the sort order, we must first find the

correct position in the file, add the record, and then fetch and rewrite all subsequent

pages (because all the old records will be shifted by one slot, assuming that the file

has no empty slots). On average, we can assume that the inserted record belongs in

the middle of the file. Thus, we must read the latter half of the file and then write

it back after adding the new record. The cost is therefore the cost of searching to

find the position of the new record plus 2 ∗ (0.5B(D + RC)), that is, search cost plus

B(D + RC).

Delete: We must search for the record, remove the record from the page, and write

the modified page back. We must also read and write all subsequent pages because all
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records that follow the deleted record must be moved up to compact the free space.2

The cost is the same as for an insert, that is, search cost plus B(D + RC). Given the

rid of the record to delete, we can fetch the page containing the record directly.

If records to be deleted are specified by an equality or range condition, the cost of

deletion depends on the number of qualifying records. If the condition is specified on

the sort field, qualifying records are guaranteed to be contiguous due to the sorting,

and the first qualifying record can be located using binary search.

8.2.3 Hashed Files

A simple hashed file organization enables us to locate records with a given search key

value quickly, for example, “Find the Students record for Joe,” if the file is hashed on

the name field.

The pages in a hashed file are grouped into buckets. Given a bucket number, the

hashed file structure allows us to find the primary page for that bucket. The bucket

to which a record belongs can be determined by applying a special function called

a hash function, to the search field(s). On inserts, a record is inserted into the

appropriate bucket, with additional ‘overflow’ pages allocated if the primary page for

the bucket becomes full. The overflow pages for each bucket are maintained in a linked

list. To search for a record with a given search key value, we simply apply the hash

function to identify the bucket to which such records belong and look at all pages in

that bucket.

This organization is called a static hashed file, and its main drawback is that long

chains of overflow pages can develop. This can affect performance because all pages in

a bucket have to be searched. Dynamic hash structures that address this problem are

known, and we discuss them in Chapter 10; for the analysis in this chapter, we will

simply assume that there are no overflow pages.

Scan: In a hashed file, pages are kept at about 80 percent occupancy (to leave some

space for future insertions and minimize overflow pages as the file expands). This is

achieved by adding a new page to a bucket when each existing page is 80 percent full,

when records are initially organized into a hashed file structure. Thus, the number

of pages, and the cost of scanning all the data pages, is about 1.25 times the cost of

scanning an unordered file, that is, 1.25B(D + RC).

Search with equality selection: This operation is supported very efficiently if the

selection is on the search key for the hashed file. (Otherwise, the entire file must

2Unlike a heap file, there is no inexpensive way to manage free space, so we account for the cost
of compacting a file when a record is deleted.
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be scanned.) The cost of identifying the page that contains qualifying records is H;

assuming that this bucket consists of just one page (i.e., no overflow pages), retrieving

it costs D. The cost is H + D + 0.5RC if we assume that we find the record after

scanning half the records on the page. This is even lower than the cost for sorted files.

If there are several qualifying records, or none, we still have to retrieve just one page,

but we must scan the entire page.

Note that the hash function associated with a hashed file maps a record to a bucket

based on the values in all the search key fields; if the value for any one of these fields is

not specified, we cannot tell which bucket the record belongs to. Thus, if the selection

is not an equality condition on all the search key fields, we have to scan the entire file.

Search with range selection: The hash structure offers no help; even if the range

selection is on the search key, the entire file must be scanned. The cost is 1.25B(D +

RC).

Insert: The appropriate page must be located, modified, and then written back. The

cost is the cost of search plus C + D.

Delete: We must search for the record, remove it from the page, and write the modified

page back. The cost is again the cost of search plus C + D (for writing the modified

page).

If records to be deleted are specified using an equality condition on the search key, all

qualifying records are guaranteed to be in the same bucket, which can be identified by

applying the hash function.

8.2.4 Choosing a File Organization

Figure 8.1 compares I/O costs for the three file organizations. A heap file has good

storage efficiency and supports fast scan, insertion, and deletion of records. However,

it is slow for searches.

File Scan Equality Range Insert Delete

Type Search Search

Heap BD 0.5BD BD 2D Search + D

Sorted BD Dlog2B Dlog2B+#

matches

Search + BD Search + BD

Hashed 1.25BD D 1.25BD 2D Search + D

Figure 8.1 A Comparison of I/O Costs



File Organizations and Indexes 237

A sorted file also offers good storage efficiency, but insertion and deletion of records is

slow. It is quite fast for searches, and it is the best structure for range selections. It is

worth noting that in a real DBMS, a file is almost never kept fully sorted. A structure

called a B+ tree, which we will discuss in Chapter 9, offers all the advantages of a

sorted file and supports inserts and deletes efficiently. (There is a space overhead for

these benefits, relative to a sorted file, but the trade-off is well worth it.)

Files are sometimes kept ‘almost sorted’ in that they are originally sorted, with some

free space left on each page to accommodate future insertions, but once this space is

used, overflow pages are used to handle insertions. The cost of insertion and deletion

is similar to a heap file, but the degree of sorting deteriorates as the file grows.

A hashed file does not utilize space quite as well as a sorted file, but insertions and

deletions are fast, and equality selections are very fast. However, the structure offers

no support for range selections, and full file scans are a little slower; the lower space

utilization means that files contain more pages.

In summary, Figure 8.1 demonstrates that no one file organization is uniformly superior

in all situations. An unordered file is best if only full file scans are desired. A hashed

file is best if the most common operation is an equality selection. A sorted file is best

if range selections are desired. The organizations that we have studied here can be

improved on—the problems of overflow pages in static hashing can be overcome by

using dynamic hashing structures, and the high cost of inserts and deletes in a sorted

file can be overcome by using tree-structured indexes—but the main observation, that

the choice of an appropriate file organization depends on how the file is commonly

used, remains valid.

8.3 OVERVIEW OF INDEXES

As we noted earlier, an index on a file is an auxiliary structure designed to speed up

operations that are not efficiently supported by the basic organization of records in

that file.

An index can be viewed as a collection of data entries, with an efficient way to locate

all data entries with search key value k. Each such data entry, which we denote as

k∗, contains enough information to enable us to retrieve (one or more) data records

with search key value k. (Note that a data entry is, in general, different from a data

record!) Figure 8.2 shows an index with search key sal that contains 〈sal, rid〉 pairs as

data entries. The rid component of a data entry in this index is a pointer to a record

with search key value sal.

Two important questions to consider are:
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h(age) = 01

h(age)=10

h(age)=00
Jones, 40, 6003

Tracy, 44, 5004

Basu, 33, 4003

Cass, 50, 5004

Daniels, 22, 6003

Bristow, 29, 2007

Smith, 44, 3000

Ashby, 25, 3000

6003

6003

2007

4003

3000

3000

5004

5004
h2

h(sal)=11

h(sal)=00

age sal

File hashed on age
File of <sal, rid> pairs

hashed on sal

h1

Figure 8.2 File Hashed on age, with Index on sal

How are data entries organized in order to support efficient retrieval of data entries

with a given search key value?

Exactly what is stored as a data entry?

One way to organize data entries is to hash data entries on the search key. In this

approach, we essentially treat the collection of data entries as a file of records, hashed

on the search key. This is how the index on sal shown in Figure 8.2 is organized. The

hash function h for this example is quite simple; it converts the search key value to its

binary representation and uses the two least significant bits as the bucket identifier.

Another way to organize data entries is to build a data structure that directs a search

for data entries. Several index data structures are known that allow us to efficiently find

data entries with a given search key value. We will study tree-based index structures

in Chapter 9 and hash-based index structures in Chapter 10.

We consider what is stored in a data entry in the following section.

8.3.1 Alternatives for Data Entries in an Index

A data entry k∗ allows us to retrieve one or more data records with key value k. We

need to consider three main alternatives:

1. A data entry k∗ is an actual data record (with search key value k).

2. A data entry is a 〈k, rid 〉 pair, where rid is the record id of a data record with

search key value k.

3. A data entry is a 〈k, rid-list 〉 pair, where rid-list is a list of record ids of data

records with search key value k.
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Observe that if an index uses Alternative (1), there is no need to store the data records

separately, in addition to the contents of the index. We can think of such an index

as a special file organization that can be used instead of a sorted file or a heap file

organization. Figure 8.2 illustrates Alternatives (1) and (2). The file of employee

records is hashed on age; we can think of this as an index structure in which a hash

function is applied to the age value to locate the bucket for a record and Alternative

(1) is used for data entries. The index on sal also uses hashing to locate data entries,

which are now 〈sal, rid of employee record〉 pairs; that is, Alternative (2) is used for

data entries.

Alternatives (2) and (3), which contain data entries that point to data records, are

independent of the file organization that is used for the indexed file (i.e., the file

that contains the data records). Alternative (3) offers better space utilization than

Alternative (2), but data entries are variable in length, depending on the number of

data records with a given search key value.

If we want to build more than one index on a collection of data records, for example,

we want to build indexes on both the age and the sal fields as illustrated in Figure 8.2,

at most one of the indexes should use Alternative (1) because we want to avoid storing

data records multiple times.

We note that different index data structures used to speed up searches for data entries

with a given search key can be combined with any of the three alternatives for data

entries.

8.4 PROPERTIES OF INDEXES

In this section, we discuss some important properties of an index that affect the effi-

ciency of searches using the index.

8.4.1 Clustered versus Unclustered Indexes

When a file is organized so that the ordering of data records is the same as or close

to the ordering of data entries in some index, we say that the index is clustered.

An index that uses Alternative (1) is clustered, by definition. An index that uses

Alternative (2) or Alternative (3) can be a clustered index only if the data records are

sorted on the search key field. Otherwise, the order of the data records is random,

defined purely by their physical order, and there is no reasonable way to arrange the

data entries in the index in the same order. (Indexes based on hashing do not store

data entries in sorted order by search key, so a hash index is clustered only if it uses

Alternative (1).)
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Indexes that maintain data entries in sorted order by search key use a collection of

index entries, organized into a tree structure, to guide searches for data entries, which

are stored at the leaf level of the tree in sorted order. Clustered and unclustered tree

indexes are illustrated in Figures 8.3 and 8.4; we discuss tree-structured indexes further

in Chapter 9. For simplicity, in Figure 8.3 we assume that the underlying file of data

records is fully sorted.

Index entries

Data entries

(Direct search for 

Index file

Data file
Data

records

data entries)

Figure 8.3 Clustered Tree Index Using Alternative (2)

Index entries

Data entries

(Direct search for 

Index file

Data file
Data

records

data entries)

Figure 8.4 Unclustered Tree Index Using Alternative (2)

In practice, data records are rarely maintained in fully sorted order, unless data records

are stored in an index using Alternative (1), because of the high overhead of moving

data records around to preserve the sort order as records are inserted and deleted.

Typically, the records are sorted initially and each page is left with some free space to

absorb future insertions. If the free space on a page is subsequently used up (by records
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inserted after the initial sorting step), further insertions to this page are handled using a

linked list of overflow pages. Thus, after a while, the order of records only approximates

the intended sorted order, and the file must be reorganized (i.e., sorted afresh) to

ensure good performance.

Thus, clustered indexes are relatively expensive to maintain when the file is updated.

Another reason clustered indexes are expensive to maintain is that data entries may

have to be moved across pages, and if records are identified by a combination of page

id and slot, as is often the case, all places in the database that point to a moved

record (typically, entries in other indexes for the same collection of records) must also

be updated to point to the new location; these additional updates can be very time-

consuming.

A data file can be clustered on at most one search key, which means that we can have

at most one clustered index on a data file. An index that is not clustered is called an

unclustered index; we can have several unclustered indexes on a data file. Suppose

that Students records are sorted by age; an index on age that stores data entries in

sorted order by age is a clustered index. If in addition we have an index on the gpa

field, the latter must be an unclustered index.

The cost of using an index to answer a range search query can vary tremendously

based on whether the index is clustered. If the index is clustered, the rids in qualifying

data entries point to a contiguous collection of records, as Figure 8.3 illustrates, and

we need to retrieve only a few data pages. If the index is unclustered, each qualifying

data entry could contain a rid that points to a distinct data page, leading to as many

data page I/Os as the number of data entries that match the range selection! This

point is discussed further in Chapters 11 and 16.

8.4.2 Dense versus Sparse Indexes

An index is said to be dense if it contains (at least) one data entry for every search

key value that appears in a record in the indexed file.3 A sparse index contains one

entry for each page of records in the data file. Alternative (1) for data entries always

leads to a dense index. Alternative (2) can be used to build either dense or sparse

indexes. Alternative (3) is typically only used to build a dense index.

We illustrate sparse and dense indexes in Figure 8.5. A data file of records with three

fields (name, age, and sal) is shown with two simple indexes on it, both of which use

Alternative (2) for data entry format. The first index is a sparse, clustered index on

name. Notice how the order of data entries in the index corresponds to the order of

3We say ‘at least’ because several data entries could have the same search key value if there are
duplicates and we use Alternative (2).
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records in the data file. There is one data entry per page of data records. The second

index is a dense, unclustered index on the age field. Notice that the order of data

entries in the index differs from the order of data records. There is one data entry in

the index per record in the data file (because we use Alternative (2)).

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass

Smith

22

25

30

40

44

44

50

33

Bristow, 30, 2007

Basu, 33, 4003

Cass, 50, 5004

Tracy, 44, 5004

Daniels, 22, 6003

Jones, 40, 6003

DATA
on

Sparse index

name

Dense index
on

age

Figure 8.5 Sparse versus Dense Indexes

We cannot build a sparse index that is not clustered. Thus, we can have at most one

sparse index. A sparse index is typically much smaller than a dense index. On the

other hand, some very useful optimization techniques rely on an index being dense

(Chapter 16).

A data file is said to be inverted on a field if there is a dense secondary index on this

field. A fully inverted file is one in which there is a dense secondary index on each

field that does not appear in the primary key.4

8.4.3 Primary and Secondary Indexes

An index on a set of fields that includes the primary key is called a primary index.

An index that is not a primary index is called a secondary index. (The terms primary

index and secondary index are sometimes used with a different meaning: An index that

uses Alternative (1) is called a primary index, and one that uses Alternatives (2) or

(3) is called a secondary index. We will be consistent with the definitions presented

earlier, but the reader should be aware of this lack of standard terminology in the

literature.)

4This terminology arises from the observation that these index structures allow us to take the value
in a non key field and get the values in key fields, which is the inverse of the more intuitive case in
which we use the values of the key fields to locate the record.
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Two data entries are said to be duplicates if they have the same value for the search

key field associated with the index. A primary index is guaranteed not to contain

duplicates, but an index on other (collections of) fields can contain duplicates. Thus,

in general, a secondary index contains duplicates. If we know that no duplicates exist,

that is, we know that the search key contains some candidate key, we call the index a

unique index.

8.4.4 Indexes Using Composite Search Keys

The search key for an index can contain several fields; such keys are called composite

search keys or concatenated keys. As an example, consider a collection of employee

records, with fields name, age, and sal, stored in sorted order by name. Figure 8.6

illustrates the difference between a composite index with key 〈age, sal〉, a composite

index with key 〈sal, age〉, an index with key age, and an index with key sal. All indexes

shown in the figure use Alternative (2) for data entries.
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Figure 8.6 Composite Key Indexes

If the search key is composite, an equality query is one in which each field in the

search key is bound to a constant. For example, we can ask to retrieve all data entries

with age = 20 and sal = 10. The hashed file organization supports only equality

queries, since a hash function identifies the bucket containing desired records only if a

value is specified for each field in the search key.

A range query is one in which not all fields in the search key are bound to constants.

For example, we can ask to retrieve all data entries with age = 20; this query implies

that any value is acceptable for the sal field. As another example of a range query, we

can ask to retrieve all data entries with age < 30 and sal > 40.
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8.5 INDEX SPECIFICATION IN SQL-92

The SQL-92 standard does not include any statement for creating or dropping index

structures. In fact, the standard does not even require SQL implementations to support

indexes! In practice, of course, every commercial relational DBMS supports one or

more kinds of indexes. The following command to create a B+ tree index—we discuss

B+ tree indexes in Chapter 9—is illustrative:

CREATE INDEX IndAgeRating ON Students

WITH STRUCTURE = BTREE,

KEY = (age, gpa)

This specifies that a B+ tree index is to be created on the Students table using the

concatenation of the age and gpa columns as the key. Thus, key values are pairs of

the form 〈age, gpa〉, and there is a distinct entry for each such pair. Once the index is

created, it is automatically maintained by the DBMS adding/removing data entries in

response to inserts/deletes of records on the Students relation.

8.6 POINTS TO REVIEW

A file organization is a way of arranging records in a file. In our discussion of

different file organizations, we use a simple cost model that uses the number of

disk page I/Os as the cost metric. (Section 8.1)

We compare three basic file organizations (heap files, sorted files, and hashed files)

using the following operations: scan, equality search, range search, insert, and

delete. The choice of file organization can have a significant impact on perfor-

mance. (Section 8.2)

An index is a data structure that speeds up certain operations on a file. The

operations involve a search key, which is a set of record fields (in most cases a

single field). The elements of an index are called data entries. Data entries can

be actual data records, 〈search-key, rid〉 pairs, or 〈search-key, rid-list〉 pairs. A

given file of data records can have several indexes, each with a different search

key. (Section 8.3)

In a clustered index, the order of records in the file matches the order of data

entries in the index. An index is called dense if there is at least one data entry per

search key that appears in the file; otherwise the index is called sparse. An index

is called a primary index if the search key includes the primary key; otherwise it

is called a secondary index. If a search key contains several fields it is called a

composite key. (Section 8.4)

SQL-92 does not include statements for management of index structures, and so

there some variation in index-related commands across different DBMSs. (Sec-

tion 8.5)
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EXERCISES

Exercise 8.1 What are the main conclusions that you can draw from the discussion of the

three file organizations?

Exercise 8.2 Consider a delete specified using an equality condition. What is the cost if no

record qualifies? What is the cost if the condition is not on a key?

Exercise 8.3 Which of the three basic file organizations would you choose for a file where

the most frequent operations are as follows?

1. Search for records based on a range of field values.

2. Perform inserts and scans where the order of records does not matter.

3. Search for a record based on a particular field value.

Exercise 8.4 Explain the difference between each of the following:

1. Primary versus secondary indexes.

2. Dense versus sparse indexes.

3. Clustered versus unclustered indexes.

If you were about to create an index on a relation, what considerations would guide your

choice with respect to each pair of properties listed above?

Exercise 8.5 Consider a relation stored as a randomly ordered file for which the only index

is an unclustered index on a field called sal. If you want to retrieve all records with sal > 20,

is using the index always the best alternative? Explain.

Exercise 8.6 If an index contains data records as ‘data entries’, is it clustered or unclustered?

Dense or sparse?

Exercise 8.7 Consider Alternatives (1), (2) and (3) for ‘data entries’ in an index, as discussed

in Section 8.3.1. Are they all suitable for secondary indexes? Explain.

Exercise 8.8 Consider the instance of the Students relation shown in Figure 8.7, sorted by

age: For the purposes of this question, assume that these tuples are stored in a sorted file in

the order shown; the first tuple is in page 1, slot 1; the second tuple is in page 1, slot 2; and

so on. Each page can store up to three data records. You can use 〈page-id, slot〉 to identify a

tuple.

List the data entries in each of the following indexes. If the order of entries is significant, say

so and explain why. If such an index cannot be constructed, say so and explain why.

1. A dense index on age using Alternative (1).

2. A dense index on age using Alternative (2).

3. A dense index on age using Alternative (3).

4. A sparse index on age using Alternative (1).
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sid name login age gpa

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 19 3.2

53650 Smith smith@math 19 3.8

Figure 8.7 An Instance of the Students Relation, Sorted by age

5. A sparse index on age using Alternative (2).

6. A sparse index on age using Alternative (3).

7. A dense index on gpa using Alternative (1).

8. A dense index on gpa using Alternative (2).

9. A dense index on gpa using Alternative (3).

10. A sparse index on gpa using Alternative (1).

11. A sparse index on gpa using Alternative (2).

12. A sparse index on gpa using Alternative (3).

PROJECT-BASED EXERCISES

Exercise 8.9 Answer the following questions:

1. What indexing techniques are supported in Minibase?

2. What alternatives for data entries are supported?

3. Are clustered indexes supported? Are sparse indexes supported?

BIBLIOGRAPHIC NOTES

Several books discuss file organizations in detail [25, 266, 381, 461, 564, 606, 680].


